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A B S T R A C T

The Texas High Plains (THP) is a productive agricultural region, and it relies heavily on the exhaustible Ogallala
Aquifer for irrigation water for crop production. Efficient use of irrigation water is critical for the sustainability
of agriculture in the THP. Grain sorghum is one of the major crops grown in the region, and it is known for its
drought tolerance and lower water requirement compared to other cereal crops such as corn. In this study, the
CERES-Sorghum and CROPGRO-Cotton modules of the Decision Support System for Agrotechnology Transfer
(DSSAT) were evaluated using data from cotton-sorghum rotation experiments at Halfway, Texas over a period
of nine years (2006–2014). The evaluated CERES-Sorghum model was then used to identify the optimum (i)
initial soil moisture at planting (ISM); (ii) threshold to start irrigation (ITH); (iii) threshold to terminate irri-
gation; and iv) deficit/excess (DFI) irrigation strategy for grain sorghum production based on simulated sorghum
yield, irrigation water use efficiency (IWUE), and grain water use efficiency (WUE). In addition, the effect of
weather conditions on simulated strategies was elucidated by dividing the long-term (1977–2016) weather data
into cold, warm, wet, dry, and normal climate variability classes based on the 33rd and 66th percentiles of
growing season temperature and precipitation. The DSSAT model adequately simulated the grain sorghum and
seed cotton yields during calibration (average Percent Error (PE) of 1.3% (sorghum) and 3.4% (cotton)) and
evaluation (average PE of −2.2% (sorghum) and −10.5% (cotton)). The results from long-term simulations
indicated that weather conditions played a key role in selecting appropriate irrigation management strategies.
Under normal/cold/wet weather, ISM of 75% available water holding capacity (AWC), ITH of 50%, and DFI 85%
were found to be adequate for irrigated grain sorghum production. However, in warm/dry weather, ISM of 75%,
ITH 60%, and DFI at 100% reduced sorghum yield loss.

1. Introduction

The semi-arid Texas High Plains (THP) is an important agricultural
region in the United States with 1.8 million ha of irrigated land
(Weinheimer et al., 2013). The primary source of irrigation in the THP
region is the Ogallala Aquifer. Water has been withdrawn from this
aquifer at a much higher rate than it has been replenished. This has
resulted in a rapid decline in the groundwater levels, especially in the
southern portion of the aquifer (Chaudhuri and Ale, 2014; Scanlon
et al., 2012). In view of the declining groundwater resources, the
Groundwater Conservation Districts in the THP have started imposing
restrictions on groundwater pumping (HPWD, 2015). These restrictions

are designed to achieve certain percent volumetric storage (varies
within the Groundwater Management Area) available in 50 years, also
known as Desired Future Conditions (Mace et al., 2008). Recent studies
(Modala et al., 2017; Nielsen-Gammon, 2011) project warm and dry
future climate in the region, which necessitate larger groundwater
withdrawals to meet higher crop evapotranspiration requirements, and
hence raise further concerns about future groundwater availability for
irrigation. Therefore, it becomes imperative to adopt efficient water
management practices to sustain agricultural production in this region.

Colaizzi et al. (2009) studied irrigation trends in the THP and sug-
gested that replacing high-water demand crops with low-water demand
crops could reduce groundwater withdrawals by nearly 20%. Grain

https://doi.org/10.1016/j.agsy.2018.12.011
Received 8 June 2018; Received in revised form 26 December 2018; Accepted 27 December 2018

⁎ Corresponding author at: Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States.
E-mail address: sriniale@ag.tamu.edu (S. Ale).

Agricultural Systems 170 (2019) 49–62

Available online 04 January 2019
0308-521X/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0308521X
https://www.elsevier.com/locate/agsy
https://doi.org/10.1016/j.agsy.2018.12.011
https://doi.org/10.1016/j.agsy.2018.12.011
mailto:sriniale@ag.tamu.edu
https://doi.org/10.1016/j.agsy.2018.12.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agsy.2018.12.011&domain=pdf


sorghum is one of the important low-water use crops grown in the THP.
Major crops grown in the THP region are cotton, wheat, corn and
sorghum with planted acres equal to 52%, 25%, 12% and 8%, respec-
tively of the total field crop acreage in the THP in 2017 (USDA-NASS,
2018). Annual planted area of grain sorghum during 1977–2016 was on
average 0.5 million ha (USDA-NASS, 2018). Although the popularity of
grain sorghum in the region declined after the late 1970s, there is a
renewed interest in this crop in recent times due to its lower water
requirement and dependable performance under varied weather pat-
terns and ethanol production (Rooney et al., 2007). Development and
evaluation of efficient irrigation strategies for sorghum production
could not only assist producers in efficiently utilizing valuable
groundwater resources from the Ogallala Aquifer, but also provide
useful information for sorghum growers and researchers working in
similar agro-climatic regions.

Previous studies in the THP, mostly field experiments, focused on
studying the effects of soil water and irrigation management practices
on grain sorghum yields (Hao et al., 2014; Musick and Dusek, 1971;
O'Shaughnessy et al., 2014; Tolk and Howell, 2003; Unger and
Baumhardt, 1999). Unger and Baumhardt (1999) performed a regres-
sion analysis between annual and growing-season rainfall, soil water
content at planting, soil water use, and crop evapotranspiration (ETc) to
identify the reasons for the steady increase in dryland sorghum yields
from 1939 to 1997 at Bushland in the THP. They found that an increase
in soil moisture at planting, mainly due to adoption of conservation-
tillage that improved crop residue retention, was the dominant factor
for yield increase apart from the use of improved hybrids. In another
study at Bushland, Tolk and Howell (2003) evaluated four irrigation
treatments (100%, 50%, 25%, and 0% ETc replacement) in two growing
seasons (1998–1999) and concluded that irrigation water use efficiency
(IWUE) decreased with increasing irrigation, and IWUE was higher in
milder (lower temperature, high rainfall) climatic conditions. They
have also reported that the sorghum grain yields were more susceptible
to changes in environmental conditions in a Pullman clay loam soil than
in Ulysses and Amarillo soils. In a more recent deficit irrigation eva-
luation study conducted at Bushland from 2009 to 2011, O'Shaughnessy
et al. (2014) reported higher grain sorghum yields with higher irriga-
tion amounts (80% of full replenishment of soil water depletion to field
capacity in the top 1.5 m soil profile) than those reported in lower ir-
rigation (55%, 30%, and 0% of full replenishment) treatments. How-
ever, IWUE was higher with a 55% of full replenishment irrigation
when compared to 80% of full replenishment, except for the drought
year of 2011. Hao et al. (2014) also noted a difference in IWUE re-
sponse to irrigation under different climatic conditions at Bushland,
with a general trend of higher IWUE for biomass yields in photoperiod-
sensitive sorghum (bioenergy crop) in limited irrigation when com-
pared to full and no irrigation conditions. Nearly all these field studies
were conducted at the USDA-ARS Conservation and Production Re-
search Laboratory at Bushland and they spanned over three or fewer
growing seasons only.

Bordovsky et al. (2011) conducted a long-term deficit irrigation
study on cotton-grain sorghum rotation at the Texas A&M AgriLife
Research Station at Halfway in the THP. The treatments included both
rainfed and irrigated with those having maximum irrigation capacities
of 1.7mm d−1 and 3.4 mmd−1 irrigation. Grain sorghum yields and
IWUE in this experiment were generally higher for the 3.4 mm d−1

treatment compared to the other two treatments. Although, the study
provided useful comparison of sorghum IWUE and grain yields over six
growing seasons (2003–2008), it did not consider the crop yield re-
sponses to soil moisture at planting. Moreover, irrigation was supplied
to fulfill cotton ET requirements first and the remainder of available
water was applied to grain sorghum, resulting in non-uniform irrigation
application for grain sorghum in different years of the experiment. A
critical understanding of the interactive effects of climate variables and
irrigation management decisions (e.g. soil water at planting, soil water
threshold for initiating irrigation, deficit irrigation levels, etc.) on crop

growth and yield over a longer period of time is of utmost importance
for developing efficient irrigation strategies for grain sorghum pro-
duction.

After a thorough calibration using field data sets, crop models can
be useful complements to field experiments for quickly and in-
expensively evaluating different irrigation strategies with reasonable
confidence based on generally available long-term weather data. They
simulate crop growth and development under numerous crop man-
agement and agro-climatic scenarios. The Decision Support System for
Agrotechnology Transfer Cropping System Model (DSSAT-CSM) (Jones
et al., 2003) has been successfully applied in the THP and nearby Texas
Rolling Plains for simulating deficit irrigation for cotton (Modala et al.,
2015), winter wheat (Attia et al., 2016), and corn (Marek et al., 2017).
Although the CERES-Sorghum (Alagarswamy and Ritchie, 1991)
module of DSSAT-CSM has been used by a few researchers (Carbone
et al., 2003; Fu et al., 2016) to simulate the effect of different man-
agement practices and environmental conditions on sorghum produc-
tion at different locations in the US, it has not been evaluated for the
THP region.

The specific objectives of this study were to (i) evaluate the DSSAT
CSM CERES-Sorghum module for the THP region using measured data
from long-term cotton-grain sorghum rotation experiments at the
Helms Farm, Halfway, TX, and (ii) use the evaluated CSM CERES-
Sorghum model to determine the optimum soil moisture content at
planting, identify the optimum soil moisture threshold for initiating
irrigation, and suggest appropriate deficit irrigation strategies for sor-
ghum in the THP region. Since measured data used for evaluating the
CERES-Sorghum module came from a cotton-grain sorghum rotation
experiment (instead of a grain sorghum monoculture experiment), a
DSSAT sequential project was created and the CROPGRO-Cotton
module was also evaluated simultaneously in this study. This additional
step was necessary to ensure that the water and nutrient balances
during the years when cotton was grown (in between two grain sor-
ghum crops) and during the fallow periods between grain sorghum/
cotton growing seasons were simulated accurately.

2. Material and methods

2.1. Study area/experiment site

In this study, field data from cotton-sorghum rotation experiments
(TALR, 2016) conducted at Halfway, TX (34° 9′ N, 101° 57′ W, 1071m
above mean sea level, Fig. 1), from 2006 to 2014, were used for the
evaluation of CERES-Sorghum and CROPGRO-Cotton (Boote et al.,
1998) modules. Sorghum was grown after two years of cotton in two
adjacent sections of a Low Energy Precision Application (LEPA) center
pivot irrigation system, namely plots 5b and 5f (Fig. 1). Irrigation was
applied at three levels, i.e., base, high, and low levels. These three
variable irrigation rates were replicated in four spans of the center
pivot. The base water level approximately matched 80% of the crop
evapotranspiration rate (ETc) from 2006 to 2009, and 60% of the ETc

from 2010 to 2014. The high and low irrigation levels were kept
at± 20% of the base level in the year 2006, and ± 50% of the base
level from 2007 to 2014. The sequence of crops and the irrigation
amounts applied for the three treatments in this study are summarized
in Table 1. The climate at the study site is semi-arid and the soil is deep
well-developed Pullman Clay Loam (Fine, mixed, superactive, thermic
Torrertic Paleustolls). Additional information about climate, soil, and
cropping system at the study area is provided in the model input sec-
tion.

2.2. DSSAT-CSM description

The DSSAT-CSM (Jones et al., 2003) simulates crop growth and
yield as well as soil water, carbon, and nitrogen processes over time
based on weather, soils, crop management, and crop cultivar data. The
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latest DSSAT 4.6.1 version (Hoogenboom et al., 2015) contains over 42
different crop growth simulation models including models for cereals,
legumes, fruit, fiber, oil, sugar, vegetables, and forage crops.

The DSSAT-CSM provides five methods for simulating irrigation, out
of which two methods are available for automatic irrigation: (i) auto-
matic when required and (ii) fixed amount automatic. Amount of irri-
gation water applied through automatic irrigation (auto-irrigation) is
estimated based on the soil available water content (AWC), which is
equal to the difference between the field capacity (SDUL) and wilting
point (SLLL) soil water contents. Auto-irrigation is triggered when the
soil moisture drops to the irrigation lower limit and ends once the water
is replenished up to upper limit of auto-irrigation. The “Automatic
when required” method allows setting the lower limit as percent of
maximum AWC while keeping the upper limit as constant at 100%,
whereas in the “fixed amount automatic” method, in addition to lower
limit, the amount of irrigation to be applied (in mm) to refill soil profile
can be specified. In this study, the “automatic when required” option
was used for determining optimum soil moisture at planting and
threshold to start irrigation, and the “fixed amount automatic” option
was used for creating deficit irrigation scenarios.

A sequence analysis was initially carried out in this study during the
model evaluation to mimic cotton-sorghum rotation field experiments
at Halfway, and then seasonal analysis was conducted to run long-term
(1977–2016) sorghum monoculture scenarios.

2.3. Model input data

2.3.1. Weather data
The weather data for this study was obtained from the Texas High

Plains Evapotranspiration Network (TXHPET) (Porter et al., 2005)
weather station at Halfway, TX for the period from 1977 to 2016. The
climate variables included minimum and maximum air temperature
(°C), precipitation (mm), solar radiation (MJm−2), wind speed (m s−1),
and relative humidity (%). Missing values were filled with the data
obtained from the National Oceanic and Atmospheric Administration
(NOAA, 2017), Agricultural Modern-Era Retrospective Analysis for
Research and Applications (AgMERRA) (Ruane et al., 2015) and NASA's
Prediction of Worldwide Energy Resource (Stackhouse, 2006). The
average annual precipitation at Halfway over the period from 1977 to
2016 was about 463mm, and the daily mean temperature varied from
−15 °C to 32 °C. A summary of annual rainfall and sorghum growing
period (May–October) rainfall and average temperature is presented in
Fig. 2.

2.3.2. Weather data classification
Long-term weather data at Halfway was classified into nine different

climate variability classes based on growing season air temperature and
precipitation (Fig. 2). The years with growing season precipitation
below the 33rd percentile (272mm) were considered “dry” years, and
those with precipitation above the 66th percentile (356mm) were
considered “wet” years. Similarly, the years with average growing
season temperature below 33rd percentile (21.2 °C) and above 66th
percentile (21.8 °C) were classified as “cold” and “warm” years, re-
spectively (Fig.3). The years that did not fall under any of the above
four categories were considered “normal” years. The thresholds chosen
in this study were intermediate to the 25th and 75th percentiles used by
Chmielewski and Potts (1995) and the 40th and 60th percentiles used
by Auer and Böhm (1994). Based on these five categories of years, nine
climate variability classes were defined, and the years falling within
each climate variability class are listed in Table 2.

2.3.3. Crop management data
The crop management data for cotton-sorghum rotation experi-

ments at Halfway were obtained from Helms Farm Annual Reports,
which are available on the Texas A&M AgriLife Research website
(TALR, 2016). Data from a total of 36 treatments from 8 cotton and 4
sorghum growing seasons in combination with three irrigation levels
were used in this study. Seeds were planted at a 3.8 cm depth in circular
rows 1.02m apart using a John Deere MaxEmerge™ Planter. One or
more crop varieties were planted within each irrigation treatment in a

Fig. 1. Location of Helms Farm near Halfway in the Texas High Plains (left). Layout of the center pivot system at the farm (right) (TALR, 2016).

Table 1
Summary of growing season irrigation amounts applied, and rainfall received
during cotton-sorghum rotation experiments at Halfway.

Plot Year Crop Irrigation during growing season
(mm)

Seasonal rain
(mm)

High Base / Medium Low

5b 2006 Cotton 429 389 332 278
2007 Sorghum 330 218 112 335
2008 Cotton 449 307 171 232
2009 Cotton 276 187 104 316
2010 Sorghum 229 162 104 292
2011 Cotton 492 342 191 68
2012 Cotton 395 275 151 236
2013 Sorghum 299 200 86 263

5f 2011 Cotton 451 300 150 68
2012 Sorghum 367 255 138 236
2013 Cotton 319 226 130 263
2014 Cotton 92 63 36 483
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year, and the varieties changed over time depending on availability.
The DSSAT evaluation was performed based on field data collected for
the early-maturity cotton cultivars (Sharma et al., 2015; Snowden et al.,
2014; Speed et al., 2008) including DP 104B2RF, FM 9180 B2F and FM
2011 GT, and medium-maturity grain sorghum cultivars (Schnell et al.,
2015), DKS 44-20 and DKS 49-45. The aim of the calibration effort in
this study was to develop a generic set of cultivar parameters for a

medium-maturity grain sorghum and an early-maturity cotton, which
would reasonably simulate phenology and crop yield over the 9-year
period, and eventually use those calibrated parameters for suggesting
efficient irrigation strategies for grain sorghum over a variety of climate
classes. The hypothesis behind this methodology was that the para-
meters developed from a wide range of seasonal conditions would be
more robust than those developed from a single season (He et al., 2017;
Timsina and Humphreys, 2006).

The details of planting and fertilizer application are presented in
Table 3. For the long-term (1977–2016) irrigated and dryland sorghum
simulations, crop management-related model inputs were specified
based on the actual practices adopted in the Halfway experiments and
common cultural practices followed for sorghum production in the THP
region as outlined in the High Plains Production Handbook (McClure
et al., 2010) (Table 3). For the auto-irrigation used in the long-term
simulations, a management depth of 0.3 m of topsoil (default) and an
irrigation efficiency of 90% were considered to represent the Low En-
ergy Precision Application (LEPA) center-pivot irrigation system used at
the location (Bordovsky and Lyle, 1996; Colaizzi et al., 2009).

2.3.4. Soil data
Some of the soil input parameters were directly obtained from soil

sample analysis results from the study site (Adhikari et al., 2016), and
the remaining parameters were generated using the SBuild tool dis-
tributed with the DSSAT model (Uryasev et al., 2004). The parameters
taken from soil sample tests include percentages of clay, silt, organic
carbon and total nitrogen, pH and cation exchange capacity
(cmol kg−1). The parameters generated using these values in the SBuild
were saturated hydraulic conductivity (cm h−1), soil water lower limit
(cm cm−1), drained upper limit (cm cm−1), soil water at saturation
(cm cm−1), soil bulk density (g cm−3), and soil root growth factor
(Table 4). The simulated plant available water content of 21.3 cm in the
top 200 cm profile was close to the values reported for Halfway in a
previous study, which varied between 17.5 cm and 21.0 cm (Clouse,
2006). The lower and upper soil water limits and saturated hydraulic
conductivity used in this study were also within the range of values
estimated using pedotransfer functions by Nelson et al. (2013) for this
study site.

2.4. Model calibration and evaluation

The CERES-Sorghum and CROPGRO-cotton modules of the DSSAT-
CSM were calibrated against the measured data from the “High” irri-
gation treatments, because it is recommended to calibrate the DSSAT
CSM under no-stress conditions (Boote, 1999). Measured data from the
“Base” and “Low” irrigation treatments were then used for model
evaluation. New sorghum and cotton cultivars, “DK Halfway” and

Fig. 2. Annual and growing season (May–October) precipitation and growing season average air temperature at Halfway, TX from 1977 to 2016.

Fig. 3. Classification of long-term weather data at Halfway, TX based on 33rd
and 66th percentiles of air temperature and precipitation.

Table 2
Climate variability classes defined for climate variability impact assessment.

Climate variability
class

Code Number of
years

Years

Warm-Wet WW 4 1979, 1985, 1986, 2015
Warm-Dry WD 8 1980, 1990, 1994, 1996,

1998, 2000, 2001, 2011
Cold-Wet CW 7 1981, 1987, 1991, 1992,

1995, 2004, 2009
Cold-Dry CD 2 1983, 1984
Warm-Normal WN 2 2012, 2016
Cold-Normal CN 5 1977, 1982, 2005, 2007, 2008
Normal-Normal NN 5 1978, 1997, 1999, 2006, 2010
Normal-Dry ND 4 1993, 2002, 2003, 2013
Normal-Wet NW 3 1988, 1989, 2014
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“FiberMax Halfway TX”, respectively were added to the DSSAT cultivar
database to represent the medium maturity sorghum and early maturity
cotton varieties used in the field experiments. A step-wise manual ca-
libration was carried out in three phases by changing one cultivar or
ecotype parameter at a time.

Initially, sorghum cultivar parameters were adjusted to get a rea-
sonable match between simulated and generally observed dates of onset
of crop growth stages, followed by adjusting several other parameters
to match simulated yields with measured sorghum yields. After ob-
taining a satisfactory calibration for sorghum, cotton parameters were
adjusted first according to the dates of onset of crop growth stages and
then seed cotton yields. Lastly, both cotton and sorghum cultivar
parameters and initial field moisture and nitrogen concentration were
fine-tuned simultaneously to get an overall good match of crop yields
with the measured data. Measured data on initial soil conditions (soil
water and nitrogen contents at the beginning of first growing season in
the cropping sequence) were not available and therefore they were
decided during the model calibration. Simulation start date was set at
about 50 days before the planting date and this spin-up period allowed
stabilization of soil water and nutrient contents as a result of rainfall
received and irrigation water applied before planting, and thereby

reduced the effect of bias resulting from defining initial soil conditions
(Müller and Robertson, 2013). The measured seed cotton and grain
sorghum yields were reported at 8% and 13% seed and grain moisture
content, respectively. Therefore, measured seed cotton and grain sor-
ghum yields were reduced by 8% and 13%, respectively, since DSSAT
simulates dry weight (Araya et al., 2017).

For grain sorghum, additional evaluation for seasonal irrigation
water use efficiency (IWUE, Eq. (1)) was performed. For calculating
IWUE, dryland grain sorghum yields were simulated by mimicking
dryland experiments conducted at Halfway. The planting density was
equal to that of the “low” irrigation treatment. Fertilizer amounts were
average of those applied at Halfway during the 2001–2008 period
(Bordovsky et al., 2011).

= ⎡
⎣⎢

− ⎤
⎦⎥

Irrigated Yield Dryland Yield
Seasonal Irrigation

IWUE
(1)

2.5. Performance statistics

Model performance during the calibration and evaluation was
evaluated using four quantitative statistical performance indicators

Table 3
Crop management related inputs used in the DSSAT CSM.

Halfway, TX sorghum production yeara Sorghum long-term simulationsb

2007 2010 2012 2013 1977–2016

Cultivar: DKS 37-07 DKS 44-20 DKS 44-20 DKS 49-45
Planting data:
Planting date May 19 May 26 May 31 June 4 June 1
Seeding density, seeds/m2 24(H), 19(B), 14(L) 17(H)(B)(L) 24(H), 19(B), 14(L) 19(H)(B)(L) 18(irrigated), 6(dryland)

Fertilizer data:
Total nitrogen applied, N kg/ha 272(H), 222(B), 173(L) 156(H)(B)(L) 187(H), 111(B), 60(L) 175(H), 128(B), 90(L) 150(irrigated), 60(dryland)

Timing, month/day 7/3, 7/19, 7/25, 7/28, 8/1 4/1, 6/17 3/5, 6/22 3/20, 7/3 6/20, 7/10

Halfway, TX cotton production yeara

2006 2008 2009 2011 2012 2013 2014

Cultivar: FM960B2R DP104B2RF DP104B2RF FM9180B2F FM9180B2F FM2011GT FM2011GT
Planting data:
Planting date May 10 May 14 May 13 May 11 May 8 May 14 June 4
Seeding density, seeds/
m2

13 13 13 13.3 13 13 12.8

Fertilizer data:
Total nitrogen applied,
N kg/ha

175(H), 170(B), 150(L) 168(H)(B)(L) 180(H), 142(B),
105(L)

125(H), 78(B)(L) 187(H), 111(B),
60(L)

175(H), 128(B),
90(L)

217(H), 179(B), 135(L)

Timing, month/day 4/7–10, 5/23, 6/28–29,
7/12–27

3/19, 7/7, 8/1 3/2, 7/21–23, 8/
3–6

3/14, 3/21, 6/16 3/5, 6/25 4/3, 6/26, 6/28 2/7, 3/27–28, 4/1,
7/22

(H), (B), (L) correspond to the irrigation levels, high, base, and low, respectively as described in Table 1 (TALR, 2016).
a Helms Research Farm, Halfway actual planting and fertilizer methods used for DSSAT evaluation.
b Common practices in the THP used to create long-term (1977–2016) sorghum dryland and irrigated scenarios (McClure et al., 2010).

Table 4
Soil hydraulic and physical properties used in the DSSAT simulations.

Depth (cm) SLLL (cm3 cm−3) SDUL (cm3 cm−3) SSAT (cm3 cm−3) SBDM (g cm−3) SSKS (m s−1) SRGF

0–5 0.13 0.23 0.41 1.48 7.2×10−6 1.0
5–15 0.13 0.23 0.41 1.48 7.2×10−6 1.0
15–30 0.17 0.29 0.43 1.44 1.2×10−6 0.6
30–45 0.20 0.31 0.43 1.44 6.4×10−7 0.5
45–60 0.22 0.34 0.43 1.44 6.4×10−7 0.4
60–90 0.21 0.32 0.43 1.45 6.4×10−7 0.2
90–120 0.20 0.31 0.42 1.48 6.4×10−7 0.1
120–150 0.20 0.30 0.41 1.51 6.4×10−7 0.1
150–180 0.20 0.30 0.41 1.51 6.4×10−7 0.0
180–210 0.20 0.30 0.41 1.51 6.4×10−7 0.0

SLLL= soil water lower limit, SDUL=drainable upper limit, SSAT= saturation, SBDM=bulk density, SSKS= saturated hydraulic conductivity, SRGF= soil root
growth factor
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(Adhikari et al., 2016) and graphical techniques. The statistical in-
dicators used are percent error (PE), percent root mean square error (%
RMSE), coefficient of determination (R2), and index of agreement (d) as
given in Eqs. 2–5:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

×PE Y Y
Y

100


(2)

=
∑ −

×=%RMSE
(Y Y)
N

100
Y

i 1
N

i i
2

(3)

=
∑ − × −

∑ − × ∑ −
=

= =

R { [(Y Y) (Y Y)] }
[ (Y Y) ] [ (Y Y) ]

2 i 1
N

i i
2

i 1
N

i
2

i 1
N

i
2

 

  (4)

= −
∑ −

∑ − + −
=

=

d 1
(Y Y)

(|Y Y| |Y Y|)
i 1
N

i i
2

i 1
N

i i
2



 (5)

where Ŷi and Yi are the ith simulated and measured values, respec-
tively, with i varying from 1 to N. N is number of observations, and Ŷ
and Ȳ are the averages of simulated and measured crop yields, re-
spectively.

PE varies between −100 to ∞. %RMSE ranges from 0 to ∞, and it
indicates the average magnitude of the difference between measured
and simulated values. A value of PE and %RMSE closer to zero indicates
a better fit. Model performance in this study was considered as ex-
cellent, if %RMSE<10; good, if 10 < %RMSE<20; fair, if 20 < %
RMSE<30; and poor, if %RMSE>30 (Bannayan and Hoogenboom,
2009; Jamieson et al., 1991). We have aimed to achieve good model
performance during both calibration and evaluation periods. R2 varies
from 0 to 1 with a value of 1 representing a perfect fit between two
series. The d ranges between 0 and 1 with 1 representing a perfect
agreement between the two series. Model calibration was carried out
until PE and %RMSE between measured and simulated yield were<
15%, and d was> 0.5.

2.6. Irrigation management scenarios

A seasonal project was created with the evaluated DSSAT-CSM
CERES-Sorghum model to study the effects of variability in historical
climate and deficit irrigation strategies on grain sorghum yield and
water use, and to determine optimum soil moisture at planting and
optimum soil moisture threshold for initiating irrigation. A total of four
volumetric soil water contents at planting, 25%, 50%, 75%, and 100%
of AWC in the top 2.1 m soil profile were considered in the simulations.
Irrigated yield, dryland yield, total irrigation water applied, irrigation
water use efficiency (IWUE, Eq. (1)), and grain water use efficiency
(WUE, Eq. (6)) were computed for each scenario. These initial soil
moisture (ISM) scenarios were referred to as ISM 25, ISM 50, ISM 75,
and ISM 100 with the numeric value representing percent of AWC.

= ⎡
⎣⎢

⎤
⎦⎥

Irrigated Yield
Seasonal Evapotranspiration

WUE
(6)

After deciding an optimum ISM based on yields, irrigation water
use, IWUE, and WUE, the effects of soil moisture threshold for initiating
auto-irrigation (ITH) were analyzed by keeping the ISM at the selected
optimum value. In these simulations, the ITH was varied by varying the
soil water lower limit and keeping the soil water upper limit constant at
100% of AWC. The ITHs tested include 30%, 40%, 50%, 60%, 70%, and
80% of AWC, similar to the approach followed by Kisekka et al. (2016)
for corn. For example, the ITH 30 scenario indicates that auto-irrigation
was triggered when water in the soil profile was depleted to 30% AWC
and refilled to 100% AWC. Finally, various deficit/excess irrigation
strategies to replenish soil water up to 55%, 70%, 85%, 100%, 115%,
and 130% of AWC were simulated by keeping the ITH and ISM at the
optimum values determined in preceding steps. These scenarios were
designated as DFI followed by a numeral that represents the targeted
final percent of AWC (DFI 55 to DFI 130). These scenarios were created
by first determining the “average daily” irrigation water (~21mm)
required to fill the soil profile from the optimum ITH to 100% AWC
(DFI 100) using the “automatic when required” auto-irrigation option.
The estimated DFI 100 average daily irrigation depth was then in-
creased/decreased proportionately for other DFI scenarios, and applied
using the “fixed amount automatic” auto-irrigation option.

3. Results and discussion

3.1. Model calibration and evaluation

3.1.1. Phenological stages
Parameters adjusted during the calibration of CERES-Sorghum and

CROPGRO-Cotton modules are shown in Tables 5 and 6, respectively.
The simulated dates of onset of cotton and sorghum growth stages
during the calibration and evaluation were close to the observed dates
for cotton (Adhikari et al., 2016; Kerns et al., 2009) and sorghum (Gerik
et al., 2003; McClure et al., 2010) in the THP region (Table 7). In 2014,
cotton did not reach physiological maturity, as it was planted late (i.e.,
it was replanted after the first cotton stand was damaged during heavy
rains), and freezing temperatures (< 0 °C) were encountered during the
reproductive growth stage (data not shown). Nonetheless, the freezing
date was close to the actual harvest date at Halfway, TX.

3.1.2. Crop yields
There was an acceptable agreement between simulated and mea-

sured crop yields at Halfway (Fig. 4) as indicated by average PE of 1.3%
and 3.4% for sorghum and cotton, respectively, during calibration
(Table 8). The maximum PE for grain sorghum yield was 15% in the
year 2007, which substantially lowered R2 value during the calibration
period. Higher PE was obtained in 2007 because a medium-early

Table 5
Parameters adjusted during CSM-CERES-Sorghum model calibration.

Parameter Description Testing range Calibrated value

Cultivar parameters
P1 Thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days above TBASE, i.e., 8 °C) 317–495 334
P2 Thermal time from the end of the juvenile stage to tassel initiation under short days (degree days above TBASE) 80–102 102
P2O Critical photoperiod or the longest day length (in hours) at which development occurs at a maximum rate 14.5–15.5 15.2
P2R Extent to which phasic development leading to panicle initiation (expressed in degree days) is delayed for each hour increase in

photoperiod above P2O
1–40 40

PANTH Thermal time from the end of tassel initiation to anthesis (degree days above TBASE) 585–875 617.5
P3 Thermal time from to end of flag leaf expansion to anthesis (degree days above TBASE) 152.5–200 152.5
P4 Thermal time from anthesis to beginning grain filling (degree days above TBASE) 81.5–190 81.5
P5 Thermal time from beginning of grain filling to physiological maturity (degree days above TBASE) 350–670 575
PHINT Phylochron interval; the interval in thermal time between successive leaf tip appearances (degree days) 49–65 49
G1 Scaler for relative leaf size 0–22 3.5
G2 Scaler for partitioning of assimilates to the panicle (head) 6–8 7
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maturity variety, DKS 37-07 (Schnell et al., 2015) was planted in that
year as opposed to the medium maturity varieties that were planted in
other years and targeted during calibration. Differences in sorghum
yields between these two varieties have also been reported in sorghum
variety trials in Texas (TALR, 2014), Virginia (Balota et al., 2013), and
New Mexico (Marsalis et al., 2015). The over-prediction of seed cotton

Table 6
Parameters adjusted during CSM-CROPGRO-Cotton model calibration.

Parameter Description Testing range Calibrated value

Cultivar parameters
EM-FL Time between plant emergence and flower appearance (photothermal days) 34–44 38
FL-SH Time between first flower and first pod (photothermal days) 3–8 5
FL-SD Time between first flower and first seed (photothermal days) 6–13 12
SD-PM Time between first seed and physiological maturity (photothermal days) 38–50 40
FL-LF Time between first flower and end of leaf expansion (photothermal days) 55–75 65
LFMAX Maximum leaf photosynthesis rate at 30C, 350 vpm CO2, and high light (mg CO2 m−2 s−1) 1.1–1.7 1.3
SLAVR Specific leaf area of cultivar under standard growth conditions (cm2 g−1) 160–175 170
SIZLF Maximum size of full leaf (three leaflets) (cm2) 250–320 250
XFRT Maximum fraction of daily growth that is partitioned to seed + shell 0.7–0.9 0.8
SFDUR Seed filling duration for pod cohort at standard growth conditions (photothermal days) 24–35 29
PODUR Time required for cultivar to reach final pod load under optimal conditions (photothermal days) 8–12 8
THRSH Threshing percentage. The maximum ratio of (seed/(seed+shell)) at maturity 65–70 70

Ecotype parameters
RWDTH Relative width of this ecotype in comparison to the standard width per node 0.8–1 0.9
RHGHT Relative height of this ecotype in comparison to the standard height per node 0.85–0.95 0.9
FL-VS Time from first flower to last leaf on main stem (photothermal days) 40–65 65
LNGSH Time required for growth of individual shells (photothermal days) 6–12 9
TRIFL Rate of appearance of leaves on the mainstem (leaves per thermal day) 0.20–0.25 0.25

Table 7
Comparison of simulated and generally observed sorghum and cotton pheno-
logical stages during calibration and evaluation.

Phenological
stage

Observed
(days after
planting)

Simulated (days after planting)

Calibration (high
water treatment)

Evaluation (base and low
water treatments)

SORGHUM Range Average Range Average
Emergence[a] 5–10 5–7 6 5–7 6
Panicle

Initiation[a]
35–40 29–35 31 29–35 31

End Leaf
Growth[b]

59 57–65 60 57–65 60

Anthesis[a] 64–70 65–74 69 65–74 69
Physiological

Maturity[a]
101–115 107–117 111 107–117 111

COTTON
Emergence[c] 4–9 6–12 8 6–12 8
First Leaf[d] 11–25 12–18 14 12–18 15
Anthesis[c] 60–70 58–64 61 58–65 61
Physiological

Maturity[c]
130–160 133–167 148 129–160 144

Harvest[e] 151–188 143–177 158 139–170 154

[a](Gerik et al., 2003); [b](McClure et al., 2010); [c](Adhikari et al., 2016);
[d](Kerns et al., 2009); [e](TALR, 2016).

Fig. 4. Comparison of measured and simulated (a) grain sorghum and (b) seed cotton yields at Halfway during model calibration for the “High” water treatment. The
solid line is 1:1 line and the dashed line is ordinary least-squares linear regression line.

Table 8
Model performance statistics during the DSSAT CSM Evaluation for crop yield
simulation.

Criteria Calibration (high
water)

Evaluation (base and low
water)

Sorghum
Number of observations 4 8
Average PE 1.3 −2.2
%RMSE 7.6 16.3
d 0.82 0.96

Cotton
Number of observations 8 16
Average PE 3.4 −10.5
%RMSE 15.5 25.9
d 0.90 0.94

PE= percent error, RMSE= root mean square error, d= index of agreement.
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yield in 2008 could be due to the carry-over effect from the previous
year. Over-prediction of sorghum residue in the previous year most
likely resulted in overestimation of soil organic carbon (SOC) (Soler
et al., 2011) and soil nitrogen (N) (Havlin et al., 1990). Higher SOC is
generally associated with higher seed cotton yields (Mitchell and Entry,
1998). On the other hand, sorghum is reported to uptake high N and
thereby reduce soil nitrate-N levels (Booker et al., 2007), which is
consistent with this study. The depleted nitrate-N during the growing
seasons was stabilized by fertilization, and no nitrogen stress was si-
mulated in any cotton years (data not shown). The underestimation of
seed cotton yield in 2014 could be explained due to the freeze damage.
The average measured and simulated dry grain sorghum yields during
the calibration were 8513 kg ha−1 and 8623 kg ha−1, respectively. The
average measured and simulated seed cotton yields during the cali-
bration were 3546 kg ha−1 and 3666 kg ha−1, respectively.

Although the model performance during the calibration (high water
treatment) was good, results were not as good for cotton under water-
limiting conditions during evaluation and resulted in an average PE of
−10.5% (Fig. 5 and Table 8). This is similar to previous studies
(Modala et al., 2015; Nouna et al., 2000; Thorp et al., 2014), which
reported unsatisfactory model performance under dry conditions.
Nouna et al. (2000) have also reported an underestimation in maize
yields under water-stress conditions largely due to inadequate simula-
tion of soil water deficits and leaf area, using the CERES-Maize model.
More recently, some other researchers (DeJonge et al., 2012; Thorp
et al., 2014) have also reported unsatisfactory performance of the ET
routines currently available in the DSSAT-CSM under water stress
conditions. ET was calculated using the FAO-56 method (Allen et al.,
1998) option available in DSSAT. Leaf area, soil moisture, biomass and
ET were not measured during the field experiments, hence their simu-
lation accuracy could not be evaluated. The simulated maximum leaf
area index (LAI) for grain sorghum (5.56m2m−2) and cotton
(3.33 m2m−2) were within the range of reported values in the THP
region (Adhikari et al., 2017; Howell et al., 2008). The CERES-Sorghum
model performance was markedly poor in the year 2012 for low irri-
gation treatment during evaluation, which was preceded by a severe
drought year in 2011. In general, there is a potential for error propa-
gation in the “sequence” analysis due to continuous long-term simula-
tion of soil processes (Bowen et al., 1998). Relatively poor model per-
formance during the model evaluation suggests that error propagation
was more prominent under resource-limiting conditions. Additional
performance statistics that indicate the robustness of the model eva-
luation (Willmott, 1981) are reported in Table 8.

As absolute values of sorghum yields were much higher as com-
pared to seed cotton yields, PE is not an appropriate measure for
comparing performances of CERES-Sorghum and CROPGRO-Cotton

modules of DSSAT. In addition, PE is sensitive to the large error values,
therefore, normalized RMSE (%RMSE) values were also calculated to
assess model performance. Further, the d-statistic was estimated be-
tween measured and simulated yields to assess overall model perfor-
mance, as it is widely used to report crop model performance (Palosuo
et al., 2011; Sau et al., 2004; Timsina et al., 2008).

The %RMSE in simulation of crop yield was the lowest (7.6%)
during sorghum calibration and the highest (25.9%) during cotton
evaluation (Table 8). In contrast, d-statistic during sorghum calibration
was found to be lowest (0.82) among both cotton and sorghum eva-
luations. This was due to the limited number of observations and higher
magnitude of error in sorghum yield simulation in the year 2007 during
calibration. Overall, based on model performance statistics, it can be
concluded that the DSSAT cotton and sorghum modules simulated crop
yields with reasonable accuracy in well-watered conditions.

3.1.3. Irrigation water use efficiency (IWUE)
The simulated IWUEs for grain sorghum were close to the measured

values (except for the year 2007) with an average PE of 7.4% (Fig. 6). A
larger difference in maturity and yield traits of the variety used in 2007
compared to the remaining three years was most likely the reason due
to the poor model performance in 2007. This limits the extrapolation of
current results to other grain sorghum varieties that are different from
the medium maturity varieties (DKS 44-20 and DKS 49-45) simulated in
this study. The underestimation of IWUE in the year 2010, especially
under base and low irrigation treatments, is likely due to over-predic-
tion of dryland grain sorghum yield in 2010 (data not shown).

Although the DSSAT model was successfully evaluated against
phenology, crop yield, and IWUE data available from three irrigation
treatments over four sorghum and eight cotton growing seasons, non-
availability of in-season data such as LAI, soil moisture, biomass and ET
for model evaluation is one of the major limitations of this study. As
suggested by He et al. (2017), evaluation of crop growth models against
in-season data on crop growth and soil processes in addition to the end-
of-the-season data such as crop yield is desirable to enhance confidence
in model application, and hence future calibration efforts should focus
on overcoming this limitation.

3.2. Model application

3.2.1. Crop response to soil moisture at planting
Irrigated grain sorghum yields under different ISM scenarios were

comparable except for the ISM 25 scenario (Fig. 8a). This suggests that
irrigated sorghum yields were not substantially affected by soil
moisture at planting of≥50% AWC. However, initial soil water content
of ≤25% AWC (or 75% or more soil water depletion) could be

Fig. 5. Comparison of measured and simulated (a) sorghum and (b) seed cotton yields at the Helms Farm during the model evaluation for the “Base” and “Low” water
treatments.
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detrimental to sorghum yields, especially during dry years. Under the
ISM 25 scenario, 14% more irrigation water was applied and the grain
sorghum yields were 6% and 2% lower when compared to the ISM 100
in dry and wet years, respectively. Simulated grain sorghum yields were
the lowest under ISM 25 scenario, but the highest ISM did not result in
the highest irrigated sorghum yields among all climate variability
classes. Simulated sorghum yields were high under ISM 75 scenario in
wet years (CW, NW, and WW) and under ISM 100 scenario in the re-
maining climate variability classes. The probable reasons for differences
in irrigated grain sorghum yields across climate variability classes were
rainfall distribution pattern over the growing season and differences in
length of the growing season (data not shown). The rainfall distribution
over time affected irrigated grain sorghum yields by influencing ni-
trogen (N) leaching and N uptake by the plant. In the years 1982, 1992,
and 2003, heavy rainfall events shortly after fertilizer application led to
N leaching, which reduced simulated N uptake and hence simulated
grain sorghum yields (Fig. 7). This is consistent with the findings of
Gérardeaux et al. (2013), who found that N uptake was the main driver
of cotton yields simulated using the CROPGRO-Cotton model, and the
negative correlation between excessive rainfall and cotton yields was
attributed to N leaching. Although, there were no measurements at the
field to confirm this relation, similar pattern has been reported in a field
study (Errebhi et al., 1998) at Becker, MN, where heavy rainfall and
subsequent N leaching events reduced N recovery and the marketable
potato yield. In warm-dry years (1980, 1998, 2001, and 2011), the crop
matured about 12 days earlier than the average growing season. The

shortening of growing season is known to reduce grain sorghum yields
(Singh et al., 2014).

Simulated dryland grain sorghum yields were about 10% (in WD) to
39% (in CW) of the irrigated sorghum yields (Fig. 8b). As expected, the
dryland sorghum yields decreased as the soil water at planting de-
creased. Dryland grain sorghum yields under ISM 25 scenario were
about 55% lower than those under ISM 100 scenario. Dryland grain
sorghum yields were 48% lower in normal years and 50% lower in dry
years when compared to wet years. Cold weather was found to be more
favorable for dryland sorghum than normal and warm temperatures.
Dryland grain sorghum yields in warm years were 36% and 50% of that
in cold years during dry and normal rainfall years, respectively. In wet
growing seasons, simulated dryland grain sorghum yields were rela-
tively stable among all temperature classes.

In general, sorghum IWUE was the highest under ISM 75 scenario
(or 75% AWC) followed by ISM 50 (Fig. 8c). IWUE was the lowest
under ISM 100 in wet years (CW, NW, and WW), due to smaller dif-
ference between the irrigated and dryland sorghum yields in those
years (resulting in smaller numerator in Eq. (5)). In the remaining cli-
mate variability classes, IWUE was the lowest under ISM 25 mainly due
to higher irrigation applied compared to other ISM scenarios. Among
climate variability classes, IWUE varied between 1.11 kgm−3 (CW) and
1.58 kgm−3 (CD). The comparatively higher than average IWUE in CD
class is attributed to the low irrigation water applied (11% less than the
average climate variability class). Although the irrigation applied is
about the same (365mm) in the CW class, it has a lower IWUE due to

Fig. 6. Comparison of measured and simulated grain sorghum irrigation water use efficiency (IWUE) under different irrigation treatments; High, Base, and Low, over
four years.

Fig. 7. Relation between seasonal nitrogen uptake and (a) total rainfall occurring on and three days after the first fertilizer application, and (b) irrigated grain
sorghum yield, for the ISM 100 treatment. The dots represent years from 1977 to 2016, and years with heavy rainfall after fertilizer application are highlighted.
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high dryland grain sorghum yields resulting in a smaller difference
between irrigated and dryland sorghum yields. This is also true for
other wet climate variability classes (NW and WW).

Grain sorghum WUE was the lowest under ISM 25 in all climate
variability classes (Fig. 8d). The WUE was the highest under ISM 100 in
ND, CN, and WW climate variability classes, and under ISM 75 in the
remaining climate variability classes. Like IWUE, sorghum grain WUE
was also high in cold-dry (CD) years compared to other climate varia-
bility classes, this was due to substantially low ET (15% lower than
average climate) compared to other climate variability classes. In a
typical year in a climate variability class, ET did not change sub-
stantially (< 14mm) under different ISM scenarios; therefore, the
changes in WUE within ISM scenarios were due to the differences in
irrigated grain sorghum yield. On the other hand, among the climate
scenarios considered, ET varied from −91mm (−15%) to +42mm
(+7%) from the average. Therefore, changes in WUE were due to the
combined effect of differences in ET and grain sorghum yield.

Overall, maintaining ISM at 75% AWC optimized irrigation water
use without lowering grain sorghum yields substantially. In wet years,
however, ISM at 50% is also an acceptable option. Soil water depletion
below 25% AWC can negatively impact sorghum yields, especially in
drought years. For dryland sorghum production, yield loss should be
expected if ISM is< 75% AWC. Different conservation practices such as
conservation tillage and residue management that enhance soil water
retention can help maintain adequate soil moisture at planting
(Baumhardt and Jones, 2002). Conservation tillage has been estimated
to increase available soil water around planting by 25mm in the THP
(Colaizzi et al., 2009). Unger (1978) reported over 20 cm increases in
plant available soil moisture within the upper 1.8 m of soil profile by

using straw mulch residue in Bushland, TX.

3.2.2. Crop response to the threshold to start irrigation
Among the six irrigation trigger thresholds studied, irrigated grain

sorghum yields were low under the lowest ITH scenarios (ITH 30 and
ITH 40) except in CD climate (Fig. 9a). Although the simulated grain
sorghum yields under ITH≥50 scenarios were about the same (average
difference 144 kg ha−1) in a climate variability class, the ITH 70 sce-
nario was found to be slightly better on average. The difference in si-
mulated irrigated grain sorghum yield between the best and the least
ITH scenarios was smaller in cold years (103 kg ha−1 in CN) compared
to warm years (812 kg ha−1 in WD), suggesting that ITH decisions are
critical in warmer years. Between ITH 50 and 60, the average difference
in irrigated grain sorghum yields and applied irrigation was 80 kg ha−1

and 16mm, respectively. In WD years, the irrigated sorghum yield
difference between ITH 50 and 60 increased up to 466 kg ha−1 and
additional 51mm irrigation was required. In general, the effect of ITH
on grain sorghum yield was much less when compared to that of soil
moisture at planting (ISM) and hence ISM should be a key factor in the
identification of optimum irrigation strategies.

Simulated irrigation amount required to maintain soil water at a
minimum of 80%, 70%, 60%, 50%, 40%, and 30% of AWC in the top
30 cm soil profile was found to be 462, 436, 416, 402, 377 and 347mm,
respectively. Considering the annual groundwater pumping limit of
460mm specified by the High Plains Water District (HPWD, 2015), ITH
80 does not seem practical for the THP region. The IWUE decreased as
the amount of irrigation increased (Fig. 9b), and this result is in ac-
cordance with the previous studies (Colaizzi et al., 2009; Hao et al.,
2014; Tolk and Howell, 2003). In a climate variability class between

Fig. 8. Grain sorghum (a) irrigated yields, (b) dryland yields, (c) irrigation water use efficiency, and (d) water use efficiency under different initial soil moisture (ISM)
and weather conditions.
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ITH scenarios, the IWUE was consistently lower under ITH 70 (average
1.27 kgm−3) and ITH 80 (average 1.19 kgm−3) scenarios, suggesting
that maintaining soil profile at ≥70% AWC is not efficient in terms of
irrigation water use. The IWUE was highest under ITH 30 (average
1.52 kgm−3) in all climate variability classes except WD, this was due
to low irrigated sorghum yields under ITH 30 in WD climate. When
grain sorghum IWUE were compared between climate variability
classes, the highest and the lowest IWUE were simulated under CD
(average 1.55 kgm−3) and CW (average 1.20 kgm−3) classes, respec-
tively.

Similar to IWUE, the simulated grain sorghum WUE decreased as
the amount of irrigation increased (Fig. 9c). Irrigated grain sorghum
yields and seasonal ET varied within 11% and 23% of the average be-
tween irrigation scenarios, respectively. This suggests that variation in
WUE could be explained due to changes in ET. This result is consistent
with Tolk and Howell (2003), who had also attributed increases in WUE
in milder climates to the reduction in ET rather than the increase in
sorghum yield. Simulated ET was the lowest in the cold-dry (CD)
weather and hence the WUE for this climate variability class was the
highest (Fig. 9c–d).

Overall, based on the simulated sorghum yield, IWUE and WUE, ITH
50 and ITH 60 were found to be appropriate thresholds for triggering
irrigation in normal/cold/wet weather conditions (CD, ND, CN, NN,
WN, CW, NW, and WW) and warm-dry years (WD), respectively.
Although the IWUE and WUE for ITH 30 and ITH 40 were higher under
most weather conditions, those two thresholds were not recommended

due to poor/low irrigated sorghum yields. In the subsequent deficit
irrigation simulations, a better threshold of ITH 50 was used.

3.2.3. Crop response to deficit/excess irrigation
The DFI 115 and 130 scenarios resulted in the highest grain sor-

ghum yield in the majority of climate variability classes, suggesting that
replenishing the soil profile up to 15 to 30% more than field capacity
would result in slightly higher grain sorghum yields when compared to
deficit irrigation (<DFI 100) strategies (Fig. 10a). Direct comparison of
the simulated results with results from field studies was a challenge
because the highest amount of irrigation water applied in most of the
field experiments in the THP (Kiniry and Bockholt, 1998; Porter et al.,
1960; Schneider and Howell, 2000; O'Shaughnessy et al., 2014; Marek
et al., 2016) was to replenish water to field capacity. An exception to
this practice, to our knowledge, was a field study at Halfway in which
researchers (Bordovsky and Lyle, 1996) tested deficit to excess irriga-
tion strategies including 40%, 70%, 100%, and 130% of grain sorghum
ETc replacement over three years period, and they found that grain
yields for irrigation treatments ≥70% ETc were not significantly dif-
ferent. The simulated irrigated grain sorghum yields varied within a
range of 39 to 240 kg ha−1 (1 to 3% of the DFI average) among the
different DFI scenarios within a climate variability class. One of the
reasons behind simulating smaller differences in sorghum yields across
different DFI scenarios within a climate variability class could be the
assumption of higher threshold of 50% to trigger irrigation (i.e. soil
water content was maintained at 50% AWC or higher at all times, which

Fig. 9. Grain sorghum (a) irrigated yields, (b) IWUE, (c) WUE, and (d) seasonal ET under different thresholds to start irrigation (ITH) and climate variability classes.
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avoided any severe water stress). However, the maximum difference in
simulated irrigated sorghum yield across all climate variability classes
was found to be 585 kg ha−1 (8% of the average sorghum yield) be-
tween NN (highest) and WW (lowest) climate variability classes. The
differences in simulated sorghum yield across DFI scenarios were pri-
marily due to water stress especially during the reproductive growth
stage of sorghum.

In general, IWUE decreased as irrigation water use increased, and
this trend was consistent with previous studies (O'Shaughnessy et al.,
2014; Hao et al., 2014; Tolk and Howell, 2003). Simulated IWUE was
the least and second least under DFI 130 and DFI 115 under all weather
conditions, respectively (Fig. 10b). The simulated IWUE was higher for
DFI≤ 85 than those in DFI> 85 strategies by 6% (0.07 kgm−3), 3%
(0.05 kgm−3), and 2% (0.03 kgm−3) in wet, normal, and dry climate
variability classes, respectively. However, the decreasing IWUE trend
with increasing irrigation was not true for all the years simulated,
especially the extreme dry years. This is likely due to reduced irrigated
sorghum yields in DFI< 85 scenarios, consistent with O'Shaughnessy
et al. (2014), who have also reported higher IWUE when soil water was
replenished to 55% of field capacity than when it was replenished to
80% of field capacity (the highest irrigation level tested), except in the
drought year of 2011. The low IWUE under DFI ≥115 scenarios was
due to excess irrigation water use, which did not always result in pro-
portionate sorghum yield gains (Fig. 10a). Among the nine climate
variability classes, the simulated IWUE was the highest and the lowest

in CD and CW climate variability classes, respectively. The average
IWUE of dry and wet years was 1.41 kgm−3 and 1.29 kgm−3, respec-
tively. This supports the results of Musick and Dusek (1971), who re-
ported higher IWUE when irrigation was applied in dry years.

Simulated WUE generally increased as irrigation amount increased
(Fig. 10c). The WUE was the least for DFI 55 in most climate variability
classes. There was no systematic increasing or decreasing trend in IWUE
from DFI 85 to DFI 130 in any climate variability class. The WUE was
highest for different irrigation strategies under different climate varia-
bility classes: DFI 130 in case of CD and NN years; DFI 115 in CN, CW,
and NW years; DFI 100 in WD and WW years; and DFI 85 in ND, and
WN years. This could be attributed to the smaller difference in simu-
lated irrigated grain sorghum yields and ET. Irrigated sorghum yields
varied within 7% (498 kg ha−1) and ET varied within 6% (36mm)
between the DFI strategies (Fig. 10d). Simulated WUE among climate
variability classes ranged between 1.18 kgm−3 (in ND) and
1.50 kgm−3 (in CD). A substantially higher WUE in CD years was due
to low seasonal ET, which was 95mm (16%) lower than the average ET.

Simulated average grain sorghum yields, IWUE, and WUE were the
highest under DFI 130 and DFI 55, and DFI 85 strategies, respectively.
During WD years, IWUE of DFI 100 was highest. Nonetheless, the DFI
85 strategy saved up to 22% irrigation water with a maximum of 6%
yield loss compared to the DFI 130 strategy. In general, a DFI 85 sce-
nario or replenishment of soil profile up to 85% AWC utilized irrigation
water efficiently without substantially reducing grain sorghum yields.

Fig. 10. Grain sorghum (a) irrigated yields, (b) IWUE, (c) WUE, and (d) seasonal ET under different thresholds to terminate auto-irrigation (DFI) and weather
conditions.
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The DFI 85 strategy was therefore found to be an appropriate irrigation
strategy during normal and wet years, and the DFI 100 during warm-
dry years.

4. Conclusions

The CERES-Sorghum and CROPGRO-Cotton modules distributed
with the DSSAT model were successfully evaluated using experimental
data from a cotton-sorghum rotation at Halfway in the THP. Several
irrigation management scenarios were then simulated to suggest op-
timum irrigation management decisions for grain sorghum production
in the THP region. The differences in grain sorghum yield, IWUE, and
WUE were greater across climate variability classes than between irri-
gation scenarios, suggesting that grain sorghum production is highly
susceptible to changes in climatic conditions. Simulated IWUE and
WUE were consistently higher in cold-dry (CD) years, indicating that
the most efficient use of applied irrigation water was achieved under
CD conditions that are associated with less ET and smaller amount of
excess water.

An initial soil water content (ISM) of 75% AWC was found to be
optimum for irrigated sorghum production in the THP. For dryland
sorghum production, ISM of< 100% AWC (in normal to dry years) or
75% (in wet years) is expected to result in yield reduction. A threshold
of 60% AWC to trigger irrigation is advisable in warmer and drier years,
while a 50% AWC threshold is adequate in normal, cold and wet years.
Applying irrigation water to refill the soil profile up to 85% AWC was
found to be sufficient in normal and wet years, however, it would be
desirable to replenish soil profile to field capacity or 100% AWC in
warm and dry years. The recommendations on irrigation management
made in this study were based on the magnitude and distribution of
seasonal rainfall and temperature during the simulation period, and the
effects of days with extreme hot/cold temperatures were not in-
vestigated. In addition, irrigation water was applied regularly to
maintain soil water content at appropriate levels throughout the season,
and hence the effect of water stress during critical growth stages (e.g.
panicle initiation and boot stage) was not investigated. Our future ef-
forts will focus on addressing these important issues. The methodology
developed in this study is not site-specific, and it can be applied to other
crops and geographical regions to design water-use-efficient irrigation
schemes with some modifications.
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